The GOOSE Dataset for Perception in Unstructured Environments
Mortimer, Peter and Hagmanns, Raphael and Granero, Miguel and Luettel, Thorsten and Petereit, Janko and Wuensche, Hans-Joachim

folder GOOSE-rosbags (232 files)
file0_Asphalt_and_Gravel_Path_along_Grassland_with_annotations.bag 20.88GB
file0_Asphalt_and_Gravel_Path_along_Grassland_with_annotations.yaml 12.23kB
file0_Asphalt_Road_along_Grassland_with_annotations.bag 8.93GB
file0_Asphalt_Road_along_Grassland_with_annotations.yaml 12.18kB
file0_Campus_Asphalt_Road_with_annotations.bag 11.29GB
file0_Campus_Asphalt_Road_with_annotations.yaml 12.16kB
file0_Campus_Autumn_Leaves_with_annotations.bag 18.25GB
file0_Campus_Autumn_Leaves_with_annotations.yaml 12.20kB
file0_Campus_Course_wavy_Gravel_Path.bag 1.28GB
file0_Campus_Course_wavy_Gravel_Path.yaml 11.76kB
file0_Campus_Course_with_annotations.bag 8.52GB
file0_Campus_Course_with_annotations.yaml 12.14kB
file0_Campus_Road.bag 12.80GB
file0_Campus_Road.yaml 11.70kB
file0_Campus_Soil_Road_with_annotations.bag 76.46GB
file0_Campus_Soil_Road_with_annotations.yaml 12.13kB
file0_Gravel_Forest_Path_with_annotations.bag 6.85GB
file0_Gravel_Forest_Path_with_annotations.yaml 12.11kB
file0_Gravel_Path_with_annotations.bag 32.98GB
file0_Gravel_Path_with_annotations.yaml 12.15kB
file0_Public_Park_along_Field_with_annotations.bag 11.63GB
file0_Public_Park_along_Field_with_annotations.yaml 12.19kB
file0_Town_Road_to_Field_with_annotations.bag 22.99GB
file0_Town_Road_to_Field_with_annotations.yaml 12.15kB
file0_wet_Asphalt_Campus_Course_with_annotations.bag 16.85GB
file0_wet_Asphalt_Campus_Course_with_annotations.yaml 12.24kB
file1_Asphalt_Path_Field_and_Forest_with_annotations.bag 20.11GB
file1_Asphalt_Path_Field_and_Forest_with_annotations.yaml 12.19kB
file1_Campus_and_City_Road_Autumn_with_annotations.bag 22.81GB
file1_Campus_and_City_Road_Autumn_with_annotations.yaml 12.19kB
file1_Campus_Asphalt_Road_with_annotations.bag 11.35GB
file1_Campus_Asphalt_Road_with_annotations.yaml 12.15kB
file1_Campus_Course_Convoy_with_annotations.bag 5.58GB
file1_Campus_Course_Convoy_with_annotations.yaml 12.14kB
file1_Campus_Grass_along_Fence_with_annotations.bag 12.20GB
file1_Campus_Grass_along_Fence_with_annotations.yaml 12.19kB
file1_Gravel_Field_Path_with_annotations.bag 5.35GB
file1_Gravel_Field_Path_with_annotations.yaml 12.16kB
file1_Gravel_Forest_Path_with_annotations.bag 3.39GB
file1_Gravel_Forest_Path_with_annotations.yaml 12.11kB
file1_Gravel_Path_through_Bush_with_annotations.bag 29.29GB
file1_Gravel_Path_through_Bush_with_annotations.yaml 12.17kB
file1_Soil_Path_along_Bush_with_annotations.bag 15.73GB
file1_Soil_Path_along_Bush_with_annotations.yaml 12.15kB
file1_wet_Asphalt_Campus_Road_with_annotations.bag 24.42GB
file1_wet_Asphalt_Campus_Road_with_annotations.yaml 12.16kB
file2_Asphalt_Path_Public_Park_with_annotations.bag 35.11GB
file2_Asphalt_Path_Public_Park_with_annotations.yaml 12.20kB
file2_Campus_Asphalt_Grass_along_Fence_with_annotations.bag 5.90GB
Too many files! Click here to view them all.
Type: Dataset
Tags: semantic segmentation, traversability, navigation, point cloud, robot navigation, autonomous systems, calibration target, camera images, classification datasets, color camera, high grass, image segmentation, LiDaR point clouds, LiDaR scans, neural architecture search, ontologies, point cloud compression, point cloud data, point cloud segmentation, raw sensor data, RGB images, robot sensing systems, robotic platform, segmentation model, semantic segmentation models, sensor data, synchronization, terrain, test split, types of obstacles, unstructured environments, training, 3D point cloud

Bibtex:
@article{,
title= {The GOOSE Dataset for Perception in Unstructured Environments},
author= {Mortimer, Peter and Hagmanns, Raphael and Granero, Miguel and Luettel, Thorsten and Petereit, Janko and Wuensche, Hans-Joachim},
year= {},
url= {https://goose-dataset.de/},
abstract= {The potential for deploying autonomous systems can be significantly increased by improving the perception and interpretation of the environment. However, the development of deep learning-based techniques for autonomous systems in unstructured outdoor environments poses challenges due to limited data availability for training and testing. To address this gap, we present the German Outdoor and Offroad Dataset (GOOSE), a comprehensive dataset specifically designed for unstructured outdoor environments. The GOOSE dataset incorporates 10000 labeled pairs of images and point clouds, which are utilized to train a range of state-of-the-art segmentation models on both image and point cloud data. We open source the dataset, along with an ontology for unstructured terrain, as well as dataset standards and guidelines. This initiative aims to establish a common framework, enabling the seamless inclusion of existing datasets and a fast way to enhance the perception capabilities of various robots operating in unstructured environments. This framework also makes it possible to query data for specific weather conditions or sensor setups from a database in future. The dataset, pre-trained models for offroad perception, and additional documentation can be found at https://goose-dataset.de/.},
keywords= {training, semantic segmentation, traversability, navigation, point cloud, robot navigation, 3D point cloud, autonomous systems, calibration target, camera images, classification datasets, color camera, high grass, image segmentation, LiDaR point clouds, LiDaR scans, neural architecture search, ontologies, point cloud compression, point cloud data, point cloud segmentation, raw sensor data, RGB images, robot sensing systems, robotic platform, segmentation model, semantic segmentation models, sensor data, synchronization, terrain, test split, types of obstacles, unstructured environments},
terms= {},
license= {CC BY-SA: https://creativecommons.org/licenses/by-sa/4.0/},
superseded= {}
}


Send Feedback